

EVM Series Operation, Installation & Maintenance Manual Vertical Multistage Pumps **EVMSU**

PARTS REFERENCE

STANDARD WARRANTY

All sectional drawings and parts reference charts are included in the Parts Reference Document.

Scan the above QR Code to view Parts Reference Document

Scan the above QR Code to view EPAC Standard Warranty

INSTRUCTION MANUAL REGARDING USE AND MA	INTENANCE
INDEX	Page No.
INDEX 1. INTRODUCTION	3
2. MANUFACTURER IDENTIFICATION DATA	3
GENERAL INFORMATION	3
4. GENERAL SAFETY WARNINGS	3
4.1 PREVENTIVE MEASURES TO BE TAKEN	
BY THE USER	3
4.2 IMPORTANT PROTECTIONS AND CAUTIONS	34
4.3 ADDITIONAL RISKS FOR SURFACE PUMPS	4
5. HANDLING AND STORAGE	4
5.1 HANDLING	
5.2 STORAGE	
6. PRODUCT OVERVIEW	
6.1 DESCRIPTION	
6.2 USE FOR WHICH PUMPS ARE DESIGNED .	
6.2.1 USE WITH DRINKING WATER	
6.3 USE FOR WHICH PUMPS ARE NOT DESIGNE	
7. SPECIFICATIONS	
7.1 MODEL DESIGNATION	
8. PREPARING FOR USE	
8.1 COUPLING TO THE MOTOR	
8.1.1 ASSEMBLING THE MOTOR TO THE PUMP	
8.2 GENERAL INSTALLATION PRECAUTIONS .	
8.2.1 INSTALLATION	
8.2.2 POSITIONING THE PRODUCT	
8.2.3 FASTENING DOWN	
8.2.4 PIPEWORK	
8.2.5 ELECTRICAL CONNECTION	
9. FILLING THE PUMP	
9. FILLING THE PUMP	
9.1 FILLING PUMP IN A FLOODED INSTALLATION	–
10. USE, STARTING, AND RUNNING	
10.1 GENERAL WARNINGS	
10.2 STARTING	
10.3 RUNNING	
10.4 STOPPING	
11. MAINTENANCE AND REPAIRS	
11.1 REPLACEMENT OF SHAFT SEAL	
12. DISPOSAL	
12 TROUBLESHOOTING	

Please keep this instruction manual on hand for future reference.

14. ADDITIONAL TECHNICAL DOCUMENTATION ...15

1. INTRODUCTION

To obtain best results from product, observe all operation and maintenance instructions given in this manual. If you need further information, please contact the nearest authorized distributor

NO PART OF THESE ILLUSTRATIONS AND/OR TEXT MAY BE REPRODUCED FOR ANY REASON.

The following symbols have been used in the compilation of this instruction manual to make the reader aware of what may happen if instructions are not followed:

WARNING!

Risk of damaging the pump or system

Risk of causing injury or damaging property

Electrical hazard

2. MANUFACTURER IDENTIFICATION DATA

2.1 MANUFACTURER DATA

Ebara Pumps Americas Corporation

1651 Cedar Line Drive Rock Hill, SC 29730 Phone: (803) 327-5005 Fax: (803) 327-5097

Fax: (803) 327-5097 e-mail: info@pumpsebara.com website: www.pumpsebara.com

*Models EVMSU/EVMSUL 1-20, EVMUG/EVMUL 32-64 & EVMSUG 32-45 certified to NSF/ANSI/CAN 61 & NSF/ANSI/CAN 372

NOTE: Only products bearing the NSF Mark on the product, product packaging, and/or documentation shipped with the product are Certified

3. GENERAL INFORMATION

FAILURE TO OBSERVE THE INSTRUCTIONS OUTLINED IN THIS MANUAL AND/OR WORK DONE ON THE PRODUCT BY ANYONE OTHER THAN OUR SERVICE CENTERS WILL VOID THE WARRANTY AND RELIEVE THE MANUFACTURER OF ALL LIABILITY FOR PERSONAL INJURY AND DAMAGE TO THE PRODUCT.

Always check to make sure that the pump was not damaged in shipment before accepting delivery. If damage is evident, a claim should be filed with the carrier at that time.

Check that the model on the pump nameplate matches that of your order.

The following parts are subject to wear during normal operation:

- bearings
- · mechanical seals
- · grommets
- capacitors

If a fault that is not listed in the "TROUBLESHOOTING" table (section 13) occurs, please contact the nearest authorized retailer.

4. GENERAL SAFETY WARNINGS

Before using the product, you must be sure you can follow the instructions given in this manual and apply them whenever using or servicing it.

4.1 PREVENTIVE MEASURES TO BE TAKEN BY THE USER

The user must comply with all local and national regulations that apply to the installation and operation of electric pumps. Operation of the pump must be compatible with the pump construction as shown in the SPECIFICATIONS section of this manual. Always wear protective gloves when handling the pump or performing maintenance.

When repairing or servicing the product, always disconnect the power first. Before starting the pump, make sure that all cables, electrical connections, and controls are in working order and are properly grounded. Improper installation may result in serious or even fatal injury.

Any electrical work should be performed by a qualified

Attempting to service, install or handle the product while its connected to a power source can result in serious and even fatal injury. When starting up the product, make sure you are wearing shoes, not standing in water, and that your hands are dry.

Users MUST NOT PERFORM ANY WORK on the motor or pump not covered within this manual.

In case of pump failure, stop operation immediately.

Operation of a broken pump may result in injury or damage to property.

4.2 IMPORTANT PROTECTIONS AND CAUTIONS

All products are designed with guards over moving parts. Operating the pump without the guards in place can cause physical injury.

The pump is supplied with a grounding conductor or a grounding type plug. To reduce the risk of electric shock, be certain that it is connected only to a properly grounded electrical supply. Do not connect pump to a power supply until permanently grounded.

4.3 ADDITIONAL RISKS INCLUDE THE FOLLOWING:

- a) Possible contact with the motor cooling fan by inserting any objects (e.g. screwdrivers, sticks and similar) through the fan cover holes.
- b) Possible restart without warning due to automatic re-arming of the motor protection device, if tripped due to motor overheating.

5. HANDLING AND STORAGE 5.1 HANDLING

Crushing hazard: The pump and its components are HEAVY and must be handled carefully. Use proper lifting equipment and work apparel. When lifting the pump/motor, use appropriate crane (or hoist). Check position and tightness of lift system so that weight of the pump is NOT unbalanced. Failure to observe this precaution can result in serious accidents.

The following must be done when moving or dismantling the motor pump:

- a) disconnect the electric supply:
- remove the suction and discharge pipes (where present) if too long or bulky:
- if present, remove any screws that secure the pump to its supporting surface:
- lift the pump using equipment suitable to the pump weight and dimensions (refer to the technical section specifications).

The product is packed horizontally in a cardboard box, with handles on request. Larger models may be packed on a wooden pallet.

Handling a complete pump with motor

To move the pump from its horizontal packed position, simply attach a suitable strap securely to the pump and motor and lift slowly using a hoist while keeping the load balanced.

WARNING! EVMU and EVMSU pumps with motor installed tend to be top heavy. Care should be taken in handling and transporting to prevent damage or injury caused by the pump falling over.

Handling a bare pump:

Follow the same procedure as for a complete pump with motor. In this case, the strap must be attached to the motor bracket. Keep packing materials inside the motor bracket in place while moving the bare pump.

5.2 STORAGE

- a) The product must be stored in a covered and dry place, far away from heat sources and protected against dust, dirt, and vibration.
- b) Protect the product against damp conditions, heat sources and mechanical damage.
- Do not place heavy objects on the packaging.
- The product must be stored at an ambient temperature between +5°C and +40°C (41°F - 104°F) with a relative humidity of 60%.

6. PRODUCT OVERVIEW

6.1. DESCRIPTION

EBARA's EVM(S)U pumps are vertical multi-stage multi-purpose, non-self-priming pumps, EVM(S)U pumps are designed for coupling to standard electric motors to provide pumping of water at various flow, pressure and temperature conditions in a wide range of appplications.

The abbreviations EVMSU and EVMU identify a wide range of vertical multi-stage pumps with in-line ports, sized for nine nominal flow rates (EVMSU 1, 3, 5, 10, 15 and 20, EVMSUG 32, 45 and EVMU 32, 45, 64 m3/h), with varying number of stages available either as a complete pump with motor or bare pump.

If you have purchased a bare pump, please make sure your motor is suited to coupling with the pump.

The model designation can be found in section 7.1.

6.2 APPLICATIONS

The pump is designed for:

- commercial and industrial water distribution systems
- washing systems
- water treatment
- fire systems
- cooling systems
- pressurisation systems
- irrigation systems

6.2.1 USE WITH DRINKING WATER

The product is constructed with materials suited for pumping drinking water. Before being used, the pump must be run with clean water at its nominal flow rate for the time indicated in the following table:

EVMSU1	60 minutes (minimum)	EVMU32	15 minutes (minimum)
EVMSU3	60 minnutes (minimum)	EVMU45	15 minutes (minimum)
EVMSU5	30 minutes (minimum)	EVMU64	15 minutes (minimum)
EVMSU10	30 minutes (minimum)	EVMSUG32	15 minutes (minimum)
EVMSU15	15 minutes (minimum)	EVMSUG45	15 minutes(minimum)
EVMSU20	15 minutes (minimum)		

6.3 PUMPS ARE NOT DESIGNED FOR USE IN THE FOLLOWING APPLICATIONS

Improper use of the pump is hazardous and can result in personal injury and damage to property.

The pumps may not be used for:

- dirty water
- highly acidic water
- corrosive fluids
- water at temperatures higher than indicated in "TECHNICAL DATA"

Improper use of the product may void the warranty.

- sea water
- flammable/explosive fluids
- fluids incompatible with the pump's materials
- installation outdoors without protection against atmospheric agents
- dry running

ALL SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE. THE MANUFACTURER RESERVES THE RIGHT TO AMEND TECHNICAL DATA FOR THE PURPOSE OF PRODUCT IMPROVEMENTS.

7. PRODUCT SPECIFICATIONS EVMSU(L)1-3-5-10-15-20

		PU	MP											
	Version				EVI	/ISU				- 1	EVN	ISU	L	
	Nominal size		1	3	5	10	15	20	1	3	5	10	15	20
Performance	HP							1/2 to	25 HI	>				
range	Capacity		2.9 to 132.1 gpm											
	Total Head						2	24.3 to	860	ft				
	Type of liquid			Cle	an wa	ater (f	or oth	er cle	an liqu	uids, c	consu	t facto	ory)	
Liquid Handling	Maximum working pres	ssure			2	30 / 3	75 PS	SI (de	pendii	ng on	mode	el)		
riananng	Liquid temperature ran	ge				-22°l	F to 24	48°F ((-30°C	to 12	20°C)			
Size	Suction			1 1/4'	"		2"			1 1/4			2"	
Size	Discharge			1 1/4'	"		2"			1 1/4			2"	
	Impeller			AISI	304 (EN 1.4	4301)			AISI	316 (EN 1.4	4401)	
	Intermediate casing			AISI	304 (EN 1.4	4301)			AISI	316 (EN 1.4	4401)	
	Liner ring		AIS	SI 304	l (EN	1.430	1) + P	PS	Als	SI 316	EN	1.440	1) + P	PS
	Bottom casing		AISI	304 (EN 1.4	4301)			AISI	316 (EN 1.	4401)		
	Casing cover			AISI	304 (EN 1.4	4301)			AISI	316 (EN 1.4	4401)	
		AISI 304 (EN 1.4301)	EVMSU 1-3-5, EVMSU 10-15-20 (depending on mod								nodel)			
	Shaft	AISI 316L (EN 1.4404)	E	EVMS	UL 1-	3-5, E	VMS	UL 10	-15-2	0 (dep	pendir	ng on	model	I)
		AISI 329A (EN 1.4462)	EVMSU / EVMSUL 5-15-20 (depending on model)											
	Shaft sleeve bearing		Tungsten carbide											
Key	Shaft Seal	SiC/Carbon/FPM	•	•	•	•	•	•	•	•	•	•	•	•
Component		SiC+Graphite/SiC/FPM	0	0	0	0	0	0	0	0	0	0	0	0
Materials	Silait Seal	SiC/Carbon/EPDM	0	0	0	0	0	0	0	0	0	0	0	0
		SiC+Graphite/SiC/EPDM	0	0	0	0	0	0	0	0	0	0	0	0
	O-ring	FPM	•	•	•	•	•	•	•	•	•	•	•	•
	O-filing	EPDM	0	0	0	0	0	0	0	0	0	0	0	0
	Outer casing		AISI 304 (EN 1.4301) AISI 316L (EN 1.4404)											
	Motor bracket		Cast Iron											
	Tie rod		AISI 431 (EN 1.4057)											
	Coupling	up to 5 HP					Die	cast a	alumir	nium				
	Осиринд	from 7 1/2 HP						Cas	t Iron					
	Base						Die	cast a	alumir	nium				
	Oval flange	up to 230 PSI	0	0	0	0	0	0	0	0	0	0	0	0
	Round flange	up to 230 PSI	•	•	•	•	•	•	•	•	•	•	•	•
Pipe	(ANSI compatible raised face)	from 230 PSI to 360 PSI	•	•	•	•	•	•	•	•	•	•	•	•
connection	Loose round flange	up to 230 PSI	0	0	0	0	0	0	0	0	0	0	0	0
	(ANSI compatible raised face)	from 230 PSI to 360 PSI	0	0	0	0	0	0	0	0	0	0	0	0
	victaulic	up to 230/360 PSI	0	0	0	0	0	0	0	0	0	0	0	0
	Clamp	up to 230/360 PSI	0	0	0	0	0	0	0	0	0	0	0	0
	Туре			EMA (
	Speed				-pole,									
Motor	Power Requirements		3 F	hase	, 230/-						_		115/23	30V
	Direction of Rotation		Clockwise when viewed from motor end											
	Motor Options				Co	nsult	factor	y for a	option	al mo	tor typ	oes		

Legend: Standard O Options

7. PRODUCT SPECIFICATIONS EVMSU(L)N 3-5-10

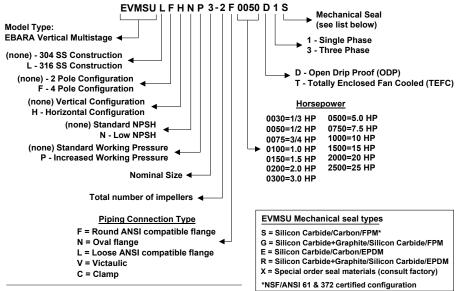
		PUI	MP						
	Version		EVMSUN EVMS				VMSU	LN	
	Nominal size		3	5	10	3	5	10	
Performance	Motor Power			•	3/4 to	15 HP		•	
range	Capacity				6.6 to 79.2	26 US gpm			
	Total Head			54 to	815 ft				
	Type of liquid	Cle	ean water (for other clea	an liquids,	consult fac	tory)		
Liquid Handling	Maximum working pressure				360) psi			
	Liquid temperature ran	ge		-22	°F to 284°F ((-30°C to 1	40°C)		
	Suction size			1/4"	2"	1	1/4"	2"	
Pipe Connection	Discharge size		1 1	1/4"	2"	1 '	1/4"	2"	
	Flange type			Round fla	nge (ANSI c	ompatible	raised face	·)	
	Impeller	AISI	304 (EN 1	.4301)	AISI	316 (EN 1	.4401)		
	Intermediate casing		AISI	AISI 304 (EN 1.4301)		AISI 316 (EN 1.4401)			
	Liner ring		AISI 304	4 (EN 1.43)	01) + PPS	AISI 31	6 (EN 1.44)	01) + PPS	
	Bottom casing		AISI 304 (EN 1.4301)			AISI	316 (EN 1	.4401)	
	Casing cover		AISI 304 (EN 1.4301) AISI 316 (EN 1.4401)					.4401)	
		AISI 304 (EN 1.4301)	EVMSUN 3-5-10 (depending on mode						
	Shaft	AISI 316L (EN 1.4404)	EVMSULN 3-5-10 (depending on model)						
Key		AISI 329A (EN 1.4462)		EVMSUN /	EVMSULN	5 (dependi	ng on mod	el)	
Component	Shaft sleeve bearing		Tungsten carbide						
Materials	Shaft Seal		SiC+Graphite/SiC/EPDM						
	O-ring		EPDM						
	Outer casing		AISI	304 (EN 1	.4301)	AISI	316L (EN 1	1.4404)	
	Motor bracket				Cast	t Iron			
	Tie rod				AISI 431 (E	EN 1.4057)		
	Coupling	up to 3 HP			Die cast a	aluminium			
	from 5 HP				Cast	t Iron			
	Base	Die cast aluminium							
	Туре		N		/TSC frame,			sure	
	Speed		2-pole, 60 Hz, 3500 rpm nominal speed						
Motor	Power Requirements		3 Phase, 230/460V or 208-230/460V - Single Phase, 115/230V						
	Direction of Rotation		Clockwise when viewed from motor end						
	Motor Options		Consult factory for optional motor types						

7. PRODUCT SPECIFICATIONS **EVMSUG 32-45**

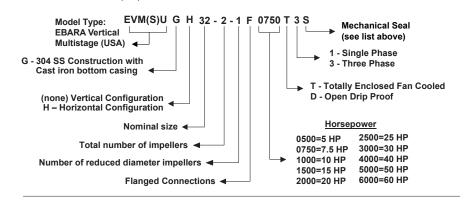
		PU	MP				
	Vers	sion		EVM	SUG		
	Nominal size		32	45			
Performance	Motor Power		5 to 60 HP				
Range	Capacity		79.3 to 317 US gpm				
	Total Head			25.3 to	918.7 ft		
	Type of liquid		Clean v	water (for other cle	an liquids, consul	t factory)	
Liquid Handling	Maximum working p	ressure	230 /	360 / 435 / 500 ps	si (depending on r	nodel)	
Handing	Liquid temperature range			-22°F to 248°F	(-30°C to 120°C)		
0'	Suction		2 1/2"	3"			
Size	Discharge		2 1/2"	3"			
	Impeller			EN 1.4301	(AISI 304)		
	Intermediate casing			EN 1.4301	(AISI 304)		
	Liner ring			EN 1.4301 (A	ISI 304) + PPS		
		EVMSU(G)(L)32		Cast Iron EN G	JL-250 EN 1561		
	Bottom casing	EVMSU(G)(L)45 230 psi		Cast Iron EN GJL-250 EN 1561			
		EVMSU(G)(L)45 360+ psi	Cast Iron EN GJL-250 EN 1561				
Casing cover			EN 1.4301 (AISI 304)				
		AISI 304 (EN 1.4301)	E	EVMSUG 32-45 (d	epending on mod	el)	
	Shaft	AISI 329A (EN 1.4462)		EVMSU 45 (depe	ending on model)		
	Shaft sleeve bearing	9		Tungste	n carbide		
Key Component		SiC/Carbon/FPM	•	•			
Materials	Shaft Seal	SiC+Graphite/SiC/FPM	0	0			
	Shall Seal	SiC/Carbon/EPDM	0	0			
		SiC+Graphite/SiC/EPDM	0	0			
	O-ring	FPM	•	•			
	O-ring	EPDM	0	0			
	Outer casing	•		EN 1.4301	(AISI 304)		
	Motor Bracket			Cast Iron EN GJS	6 400-15 EN 1563	3	
	Tie rod			EN 1.4057	' (AISI 431)		
		up to 5 HP	Die	cast Aluminium E	N AB-AISI11 Cu2	(Fe)	
	Coupling	from 7 1/2 to 40 HP		Cast Iron EN G	JL250 EN 1561		
		50 HP and larger		Carbo	n Steel		
	Base			Cast Iron EN G	JL200 EN 1561		
Pipe	Round flange (ANSI	I compatible raised face)	•	•			
connection							
	Туре		NEM	A TC/TSC frame,	TEFC or ODP end	closure	
	Speed		2	-pole, 60 Hz, 3500	rpm nominal spe	ed	
Motor	Power Requirement	ts	3 Phase, 230	0/460V or 208-230	460V - Single Ph	ase, 115/230V	
	Direction of Rotation	1	Clockwise when viewed from motor end				
	Motor Options		C	Consult factory for	optional motor typ	es	

7. PRODUCT SPECIFICATIONS

EVMUG 32, 45, 64 EVMUL 32, 45, 64


	EVMUG	EVML	JL			
Size Suction	ANSI compatible raised face 2 ½" for EVMUG32 3" for EVMUG45 4" for EVUMG64					
Discharge	ANSI compatible raised face 2 ½" for EVMUG32 3" for EVMUG45 4" for EVUMG64					
Range of HP	5 to 50HP					
Range of Performance Capacity Head	at 3450 RPM 66 to 390 GPM 44 to 930 feet					
Liquid handled						
Type of liquid	Clean water (for other clean liquids, consult factory)					
Temperature	5° to +248°F (-15° to 120°C)					
Working pressure	to 440 PSI (30 Bar) max. (see page 21 for specifics)					
Materials						
Impeller	1	AISI 31				
Intermediate casing	1	AISI 31	• •			
Bottom casing	1	AISI 31				
Casing cover Outer casing	1	AISI 31				
Shaft	1	AISI 31				
Liner ring	PTFE/AISI 316	7110101	10			
Motor bracket	Cast iron	Cast in	on/316			
Base	0401	Cast in				
Pump Bearing	Thrust Bearing : Sealed Ball Bearing	7				
	Radial Bearing in wet end: Tungsten	Carbid	е			
Shaft Seal						
Mechanical seal	Silicon/Carbide/Carbon/FPM					
Motor						
Type	NEMA TC/TSC frame		Consult factory for			
Speed	60 Hz, 3450 RPM (2 poles)		optional motor types			
Three Phase	208-230/460V		•			
Direction of Rotation	Clockwise when viewed from motor er	nd				
Test standard	ISO 9906 annex A					

Note: EVMSU/EVMSUL 1-20, EVMUG/EVMUL 32-64 & EVMSUG 32-45 certified to NSF/ANSI/CAN 61 & NSF/ANSI/CAN 372


7.1 MODEL DESIGNATION

MODEL DESIGNATION

Models EVMSU 1, 3, 5, 10, 15, 20 EVMSUL 1, 3, 5, 10, 15, 20

Models EVMSUG 32, 45, EVMUG 32, 45, 64

8. PREPARING FOR USE

Installation must be performed by qualified or factory trained personnel.

When lifting the pump/motor, use appropriate lift equipment, and check position and tightness of lift system so that the weight of the pump remains balanced. Failure to observe this precaution may result in serious accidents.

Lifting eye(s) attached to the motor (if provided) are intended only for lifting the motor and must not be used to lift the complete pump assembly.

8.1 COUPLING TO THE MOTOR

The motors to be coupled to the EVMU and EVMSU pumps must meet NEMA standards. Consult motor nameplate and motor manufacturer's specifications for additional guidance on motor installation and operation, including maximum starts per hour.

Check that all power is off and that the motor is disconnected from the power supply prior to ANY work performed on the pump and/or motor.

It is strongly suggested to perform a start-up test run following coupling to check operation. If possible, it is suggested to perform coupling once the pump has been fastened down in its working position and connected to the suction and discharge pipes.

8.1.1 ASSEMBLING THE MOTOR TO THE PUMP

The following procedure must be done with the unit disconnected from its electrical power supply.

EVMSU20 [-A-] EVMSU32-1, EVMSU32-2, and EVMSUG32-45

- Position and secure the pump vertically on a flat, rigid surface.
- Unscrew the 4 coupling guard screws, then remove the two coupling guards. [A-1]
 Remove foam packing material from around the coupling. [A-1]
- EVMSU only: Evenly loosen the three set screws in the seal holder (shaft locking collar) by one full turn. [A-2]
- Unscrew the coupling screws and remove both coupling halves from the pump. [A-3]
- EVMSU only: Remove the motor key from the motor and install the half-key. [A-4]

WARNING! The half-key should not protrude from the slot in the motor shaft.

- Set the motor vertically with its shaft downwards and place it over the pump. [A-5]
- Insert and evenly tighten down the 4 motor bolts to the torque specified on page 14. [A-5]
- 9. Loosely reinstall the coupling halves. For EVMSU, the half-key must face away from the gap between the coupling halves. [A-6]
- Use a suitable lever to pull the coupling upward until it stops against the end of the motor shaft. [A-7]
- 11. With the coupling raised, evenly tighten the four coupling bolts evenly to the torque specified on page 14. [A-7]
- 12. Rotate the coupling by hand and use a feeler gauge to check that the gap between the coupling halves is even. If not, repeat from step 9. [A-8]
- 13. EVMSU only: Evenly tighten the three set screws on the seal holder to the torque specified on page 15. [A-9]

WARNING! The seal holder set screws must be tightened prior to operation or damage to the pump may occur.

- 14. Reinstall the two coupling guards. [A-10]
- 15. The motor is now installed.

EVMU32-3-2 to 32-10-1, EVMU45 and EVMU64 all sizes

- Position and secure the pump vertically on a flat, rigid surface.
- Attach a strong sling or chains to the motor lifting lugs or eyebolts to ensure that the motor is balanced when lifted.
- Set the motor vertically with its shaft downwards and place it over the pump.
- Insert and evenly tighten down the 4 motor bolts: 1/2" - 58.3 Nm (43 lb-ft), 5/8" - 124.8 Nm (92 lb-ft)
- The motor is now installed

8.2 GENERAL INSTALLATION PRECAUTIONS

WARNING! Remove the suction and discharge caps before connecting the pump to the piping.

- Use metal or rigid plastic pipes to avoid pipe strain or collapse due to possible force created at suctions
- Support and align pipes so that they do not put any stress on the pump;
- Avoid throttling caused by bending suction and discharge hoses;
- Seal any piping connections: air infiltration in the suction pipe negatively affects pump operation;
- Isolation valves should be installed on both the suction and discharge side of the pump in the event service of the pump is required: It is recommended that a bleed valve be installed in the discharge line to allow pressure in the pump to be relieved for service;

WARNING! Installing a bleed valve is especially necessary in hot water applications to prevent injury.

- Properly support and secure all piping so that it is not supported by the pump;
- Use minimal bends (goosenecks) and valves;
- In suction lift installations, the suction pipe should be fitted with a foot valve and filter in order to prevent foreign matter from entering, and its end should be immersed at a depth that is at least twice the diameter of the pipe; its distance from the bottom of the reservoir should also be one and a half times its diameter
 - For suction piping exceeding 13 feet use an oversized pipe (1/4" wider at suction) for improved efficiency;
- Ensure that the pump suction, marked by a sticker, is connected to the liquid source and that the discharge, similarly marked, is connected to the discharge line;
- Ensure that the suction and discharge gaskets are properly installed to prevent leaks and that they do not restrict the flow to or from the pump.

Standard ANSI mating flanges should be used to connect the pump to the piping. Suction and discharge piping should be no smaller than the respective pump port sizes.

8.2.1 INSTALLATION

- Position the pump on a flat surface that is as close as possible to the water source. Leave enough space and ventilation around the pump to allow safe use and maintenance. There must be a minimum distance of 4 inches of "free space" in front of the cooling fan;
- use standard plumbing practices to avoid unnecessary line losses, cavitation, and air lock.

8.2.2 POSITIONING THE PRODUCT

WARNING! Install the pump in a ventilated area protected from weather or destructive elements (rain, frost, etc).

Note: The ambient temperature and altitude ranges are provided in Section 10 1

Place the pump away from walls, the ceiling or other obstacles so that the pump can be fastened, operated and serviced safely.

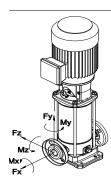
8.2.3 FASTENING DOWN

Bolt the pump on to a concrete base or suitable metal structure. Use of anti-vibration supports is highly recommended in commercial buildings (with occupants) if the concrete base is an integral part of the reinforced concrete structure of buildings. When fastening, use a drill bit to center mark the 4 holes in the base of the pump on the surface it is due to be installed on. Use a drill to make 4 holes (dia. 12mm (15/32") for EVMSU 1. 3. 5, 10, 15, 20 pumps and dia. 14mm (9/16") for EVMU 32, 45, 64 and EVMSUG 32, 45 pumps). Move the pump back into position, line it up with the pipes and tighten the screws all the way. The position of the fastening holes is also illustrated in section 15.6.

8.2.4 PIPEWORK

In addition to the instructions given below, also comply with the general instructions found in sect. 15.7 of the manual and with the directions in fig. 1.

WARNING! Suction and discharge piping must be sized to withstand the maximum working pressure of the It is recommended that a pressure gauge be installed on the discharge line before the check valve and isolating valve. Use adequate supports for the suction and discharge lines to avoid stress on the pump flange. If the pump is installed with a suction lift arrangement (liquid level lower than the pump) and it feeds an open circuit, install a foot valve at the end of the suction line and use a hose connected to the pump.


WARNING! Ensure that available NPSH is greater than NPSH required by the pump. Insufficient NPSH will result in cavitation, which reduces pump performance and may result in damage to the pump. Refer to the pump curves.

8.2.5 ELECTRICAL CONNECTION

WARNING! Electrical connections must be made by qualified personnel. Motor and circuit protection must be appropriately sized. Observe all applicable codes and standards.

Connect the electrical supply to the pump, following the motor manufacturer's instructions.

8.3 FLANGE LOADING AND TIGHTENING TORQUES

ALLOWABLE	STRAIN ON	THE FLA	NGE							
	Model		Flang		F	x	F	у	F	z
	wodei		гіа	nge	[lb]	[N]	[lb]	[N]	[lb]	[N]
EVMSU(L)	1-3-5	F	ANSI	1-1/4"	61	270	52	230	47	210
EVMSU(L)	1-3-5	L	ANSI	1-1/4"	61	270	52	230	47	210
EVMSU(L)	1-3-5	N	-	1-1/4"	61	270	52	230	47	210
EVMSU(L)	10-15-20	F	ANSI	2"	110	490	101	450	90	400
EVMSU(L)	10-15-20	L	ANSI	2"	110	490	101	450	90	400
EVMSU(L)	10-15-20	N	-	2"	110	490	101	450	90	400
EVMSUG	32	F	ANSI	2-1/2"	236	1050	208	925	191	850
EVMSUG	45	F	ANSI	3"	281	1250	253	1125	230	1025
EVMU(L)	32	F	ANSI	2-1/2"	472	2100	416	1850	382	1700
EVMUG	32	F	ANSI	2-1/2"	236	1050	208	925	191	850
EVMU(L)	45	F	ANSI	3"	562	2500	506	2250	461	2050
EVMUG	45	F	ANSI	3"	281	1250	253	1125	230	1025
EVMU(L)	64	F	ANSI	4"	753	3350	674	3000	607	2700
EVMUG	64	F	ANSI	4"	377	1675	337	1500	303	1350

ALLOWABLE TORQUE ON THE FLANGE

	Model		Flo		N	1x	N	ly	M	lz
	Model		Fia	Flange		[Nm]	[lb-ft]	[Nm]	[lb-ft]	[Nm]
EVMSU(L)	1-3-5	F	ANSI	1-1/4"	170	230	207	280	140	190
EVMSU(L)	1-3-5	L	ANSI	1-1/4"	170	230	207	280	140	190
EVMSU(L)	1-3-5	N	-	1-1/4"	170	230	207	280	140	190
EVMSU(L)	10-15-20	F	ANSI	2"	251	340	310	420	221	300
EVMSU(L)	10-15-20	L	ANSI	2"	251	340	310	420	221	300
EVMSU(L)	10-15-20	N	-	2"	251	340	310	420	221	300
EVMSUG	32	F	ANSI	2-1/2"	442	600	553	750	406	550
EVMSUG	45	F	ANSI	3"	479	650	590	800	424	575
EVMU(L)	32	F	ANSI	2-1/2"	885	1200	1106	1500	811	1100
EVMUG	32	F	ANSI	2-1/2"	442	600	553	750	406	550
EVMU(L)	45	F	ANSI	3"	959	1300	1180	1600	848	1150
EVMUG	45	F	ANSI	3"	479	650	590	800	424	575
EVMU(L)	64	F	ANSI	4"	1069	1450	1291	1750	922	1250
EVMUG	64	F	ANSI	4"	535	725	645	875	461	625

FLANGE TIGHTENING TORQUE

	Model		Flange		Bolt Size	No. of	Tighteni	ng torque
	wodei		Fla	nge	DOIL SIZE	Bolts	[lb-ft]	[Nm]
EVMSU(L)	1-3-5	F	ANSI	1-1/4"	5/8"	4	52	70
EVMSU(L)	1-3-5	L	ANSI	1-1/4"	5/8"	4	52	70
EVMSU(L)	1-3-5	N	-	1-1/4"	M10	2	22	30
EVMSU(L)	10-15-20	F	ANSI	2"	5/8"	8	26	35
EVMSU(L)	10-15-20	L	ANSI	2"	5/8"	8	26	35
EVMSU(L)	10-15-20	N	-	2"	M12	2	37	50
EVMSUG	32	F	ANSI	2-1/2"	5/8"	4	59	80
EVMSUG	32	F	ANSI	2-1/2"	3/4"	8	59	80
EVMSUG	45	F	ANSI	3"	5/8"	8	59	80
EVMU(L)(G)	32	F	ANSI	2-1/2"	5/8"	4	59	80
EVMU(L)(G)	32	F	ANSI	2-1/2"	3/4"	8	59	80
EVMU(L)(G)	45	F	ANSI	3"	5/8"	4	59	80
EVMU(L)(G)	45	F	ANSI	3"	3/4"	8	59	80
EVMU(L)(G)	64	F	ANSI	4"	5/8"	8	59	80
EVMU(L)(G)	64	F	ANSI	4"	3/4"	8	74	100

Mode	el	EVMSU(L)	EVMSU(L)	ΕV	/MU(S))G
m³/h	ır	1/3/5	10 / 15 / 20	32	45	64
Flore	Flange Bolt Size		ANSI	ANSI	ANSI	ANSI
Fiang			2"	2-1/2"	3"	4"
Bolt S			5/8"	3/4"	3/4"	3/4"
No. of E	Bolts	4	8	8	8	8
Tightening	[lb-ft]	52	26	59	59	74
torque	[Nm]	70	35	80	80	100
Allowable	[lb]	61	110	236	281	377
Strain Fx	[N]	270	490	1050	1250	1675
Allowable	[lb]	52	101	208	253	337
Strain Fy	[N]	230	450	925	1125	1500
Allowable	[lb]	47	90	191	230	303
Strain Fz	[N]	210	400	850	1025	1350
Allowable	[lb-ft]	170	251	442	479	535
Torque Mx	[Nm]	230	340	600	650	725
Allowable	[lb-ft]	207	310	553	590	645
Torque My	[Nm]	280	420	750	800	875
Allowable	[lb-ft]	140	221	406	424	461
Torque Mz	[Nm]	190	300	550	575	625

9. FILLING THE PUMP [- B -]

WARNING! DO NOT START the pump until it has been positioned and installed the final place of operation.

The pump and suction line must be filled with water. Running the pump without water will cause serious damage to the pump.

Extreme caution should be used if priming the pump in a hot water application

9.1. FILLING PUMP IN SUCTION LIFT ARRANGEMENT [B-1]

- a) Unscrew the fill plug (large plug) located above the outer iacket in front of the coupling guard (remove coupling quards if necessary).
- b) Using a funnel, fill the suction line and pump casing with water to overflowing.
- Screw the fill plug back on until tight.
- Areas that have become wet as a result of water leaks must be dried thoroughly.
- Reinstall the coupling covers if they have been removed;

9.2 FILLING PUMP IN A FLOODED INSTALLATION [B-1a]

- Loosen the vent plug (small plug) several turns. Complete removal of the plug is not necessary to prime the pump;
- Open the suction valve until the water flows out around the vent plua:
- Retighten the vent plug.

10. USE, STARTING AND RUNNING [- B -]

WARNING! Never allow the pump to operate without water. Doing so can seriously damage internal components.

10.1. GENERAL WARNINGS

- a) The pumps are designed to operate at ambient temperature no higher than 104°F (40°C) and elevation no higher than 3280 feet (1000 m);
- b) The pumps cannot be used in swimming pools or similar
- Prolonged operation with the discharge pipe closed can cause damage; EVMU and EVMSU pumps are designed for continuous and normal off/on operation. Rapid cycle may cause high heat and loading that can damage the motor or the pump.

WARNING! EVMU and EVMSU pumps are designed for continuous and normal off/on operation. Rapid cycling may cause high heat and loading that can damage the motor or the pump.

- Avoid starting the pump more than 50,000 times per year. If the pump is started more than 50,000 times per year, the pump life may be shortened and there is a risk of premature failure.
- e) During power outages, it is advisable to disconnect the power to the pump.
- Select the pump so that it will operate near the best efficiency point. Operate the pump within the allowable operating region of the pump curve.

10.2 STARTING

Once the pump has been properly installed and primed, check the direction of rotation before operating the pump. [B-3]

- Start the pump with the discharge valve closed.
- Check the motor rotation. Rotation should be clockwise when viewed from the top (fan end) of the motor. Rotation is most easily seen immediately after the motor is turned off. [B-3]
- If motor rotation is in the wrong direction, (counterclockwise), disconnect the power supply and swap two of the motor's power phases in the electrical enclosure or teminal block.
- With the motor running, vent air from the pump by loosening the vent plug until water comes out, then retighten to close.
- Start the pump two or three times to check system conditions;
- With the motor running, partially close, then re-open the discharge line isolation valve a few times to cause a rapid pressure increase.
- Run the pump for a few minutes, checking that noise. vibration, pressure, voltage, and current are within acceptable range.
- h) Shut off power to the motor and wait for the coupling to come to a stop.
- Unscrew the 4 screws and remove the two coupling guards
- Inspect the interior of the motor bracket for water. If water is present, drain the pump and reposition the coupling. Repeat the process from step 4 to step 20 of section 8.1.1.
- Reinstall the two coupling guards.

10.3. RUNNING

Start the pump with the isolating valve on the discharge line closed, then open it gradually. The pump must operate smoothly and quietly. Close the isolating valve again and make sure that the reading on the discharge line pressure gauge is close to the that indicated in the pump specifications. (This approximation is mainly attributable to tolerances and to possible suction lift). If the pressure gauge reading is much lower than specified, repeat the priming procedure in section 9 of this manual. The pump is working properly if the two readings are close in value. If the trouble with the isolating valve open continues, it typically is an electrical or mechanical motor system problem or of pump cavitation due to:

- excessive difference in height or excessive pressure loss along suction line.
- low backpressure in the discharge line;
- temperature of the liquid being pumped.

Note: motor output is reduced if ambient temperature and elevation are higher than those specified. In this case, a larger motor may be required.

Fast-closing valves (exceeding 1.5 times the pump nominal pressure) can cause pressure peaks or water issues and damage to the pump.

Do not operate the pump continuously with the discharge line isolating valve closed.

Operating the pump continuously at a flow rate below the minimum rate indicated on the nameplate will result in potential overheating of the pumped liquid and overloading of the motor bearings.

10.4 STOPPING

- a) Gradually shut off water to the discharge line to avoid overpressure in the piping and pump;
- b) Cut off the power supply.

11. MAINTENANCE AND REPAIRS

ALWAYS DISCONNECT ALL POWER BEFORE PERFORMING ANY MAINTENANCE WORK ON THE PUMP AND MOTOR.

Before servicing the pump, be sure to relieve the system pressure. Removing components under pressure may result in injury or damage. Use a pressure bleed valve in hot water applications where water temperature could cause physical iniurv.

Regularly scheduled maintenance should not be necessary. However, periodic inspectionis recommended to ensure the pump is running properly. Periodic checks and preventive maintenance will reduce sudden or significant problems and repairs. Common maintenance operations include:

- replacement of mechanical seals
- replacement of grommets
- replacement of bearings
- replacement of single-phase motor capacitors.

Although subject to typical wear, correct operation of the pump will prolong the service life of these parts.

If the pump will not be operated and inactive for a long period, it should be emptied completely, with the discharge and fill caps removed, then washed and rinsed carefully with clean water. Avoid leaving residual water inside the pump.

To prevent damage to pump components, these steps should also be followed if freezing temperatures are expected.

When performing repair work, order original spare parts from our sales and customer support network. Non-original spare parts can damage the product and are a hazard for persons and property.

11.1 REPLACEMENT OF SHAFT SEAL [- C -]

See pictorial instructions on pages 16-19.

WARNING! The mechanical seal must be set following the procedure outlined in the seal replacement instructions. Ensure that the seal holder (locking collar) set screws are tightened. Failure to set the mechanical seal may result in damage to the pump.

12. DISPOSAL

The user is responsible for disposing of the equipment by taking it to a collection and recycling facility authorized to dispose of electrical waste. Please adhere to local waste disposal regulations should the product become defunct and need to be "scrapped." Completely empty the product of all fluids - do not leave any treated fluid inside it. EBARA pumps should not (typically) contain hazardous polluting material. For further information on equipment collection points, contact your local waste disposal authority.

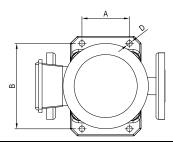
13. TROUBLESHOOTING

DISPLAYED FAULT	CAUSE	SOLUTION		
	Float sticking	Check that the float reaches the level ON		
	Thermal protection activated (single phase)	It reactivates automatically (single phase only)		
	Incorrect electrical connection	Check the terminal board and the electrical panel		
THE PUMP DOES	Automatic switch triggered or fuses blown (*)	Reset the switch or replace the fuses and verify the cause		
The motor does not turn	No electricity	Check the electrical supply meter		
	Plug not inserted	Check the connection to the power supply		
	Built-in thermal over- load protection device (if fitted) or thermal cutout in control panel tripped (*)	Wait for built-in therms overload protection device to reset or rese thermal cutout in con- trol panel		
	Device protecting against dry running tripped (*)	Check water level and, or correct connection of system devices		

	Decrease in the line	Mait for valtage to		
	Decrease in the line voltage	Wait for voltage to return to normal		
THE PUMP DOES NOT WORK The motor turns	Suction filter / inlet blocked	Clean filter/inlet		
	Foot valve blocked (**)	Release or clean the valve and check that it works properly		
	Pump has not been filled (**)	Fill (sect. 9)		
	Water level low (if no protection system is fitted) (**)	Restore water level		
	Pump not primed	Prime the pump Check any isolation and check valves Check the liquid level		
	Pressure too low	Restrict the discharge line		
(**)Caution: mechan	ical seal could be dama	ged		

DISPLAYED FAULT	CAUSE	SOLUTION	DISPLAYED FAULT	CAUSE	SOLUTION		
THE PUMP WORKS with a reduced flow rate	System undersized	Ensure that pump is sized for the application	THE PUMP STOPS AFTER WORKING	The difference between	Increase the difference between the two pressures		
	System dirty	Clean the piping, valves, filters Switch off the pump	FOR BRIEF PERIODS Pressure applications	maximum and minimum pressure is minimal			
	Water level too low	or immerse the foot valve	merse the foot THE PUMP DOES NOT STOP two of the line Pressure		Set maximum pressure at a		
	Incorrect rotational direction (three-phase only)	Swap two of the line phases			lower value		
	Incorrect supply	Supply the pump with the voltage indicated		Flow rate too high	Reduce the flow rate		
	voltage	on the nameplate		Cavitation	Contact the nearest retailer		
	Leaks from piping	Check the joints	THE PUMP VIBRATES	Piping not secured	Secure piping		
	Pressure too high	Recheck the system	Or is too noisy during operation	Noisy bearing	Contact the nearest authorized distributor or service center		
PUMP STOPS AFTER RUNNING FOR SHORT TIME as a result of thermal overload protection tripping	Supply voltage outside	Check whether there		Debris contacting the motor fan	Remove debris		
	motor's accepted range	are excessive drops in voltage due to undersized line or cables		Incorrect priming	Prime the pump and/ or fill it again		
	Inadequate thermal cutout setting	Adjust setting to motor's rated current (see rating plate)	Circuit breaker trips or fuses	Motor short-circuited	Check and replace		
	Motor overload due to dense and/or viscous	r viscous one - Check actual power absorbed by the pump based on liquid pumped s liquid than Reduce flow rate by		Short-circuit due to incorrect connection	Check and reconnect correctly		
	Pump delivers liquid		Leakage current caused by damaged insulation of motor, cables or other electric components	Check and replace electric component with ground fault			
	at higher rate than Reduc			Foot valve leaking	Check, clean or replace		
	Panel exposed to sun or other sources	Protect panel from sun or	site direction when stopping	Suction pipe leaking	on pipe leaking Check and repair		
	of heat	sources of heat.	_	Motor bearings worn	Replace bearings		
	Foreign matter blocking impeller rotation	- Disassemble and clean pump - Call our nearest Servicing Department to do the job		Foreign matter between fixed and rotating parts.	Disassemble and clean pump Call nearest authorized service center		
	Motor bearings worn	- Replace bearings - In this case, motor is noisy, too	Pump vibrates and is unusually noisy		Reduce flow rate by throttling discharge line. If cavitation persists,		
THE PUMP STOPS AFTER WORKING FOR BRIEF PERIODS Thermal protection intervention	Liquid temperature too high	The temperature exceeds the technical limits of the pump		Pump operation affected by cavitation	check: - Suction height - Pressure loss along suction line (diameter of pipe, elbows etc.)		
	Internal fault	Contact the nearest authorized distributor or service center			Liquid temperature Discharge line backpressure		

14 ADDITIONAL TECHNICAL INFORMATION 14.1 MAXIMUM WORKING PRESSURE CHART

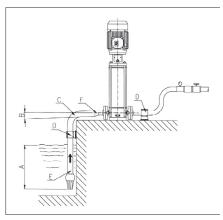

Maximum working	Pump Model		
pressure (psi)	EVMSU1	EVMSU3	EVMSU5
232	2-18	2-15	2-12
375	20-29	16-23	13-19

Maximum working	Pump Model		
pressure (psi)	EVMSU10	EVMSU15	EVMSU20
232	1-10	1-7	1-6
375	11-16	8-12	8-10

Maximum working	Pump Model		
pressure (psi)	EVMU32	EVMU45	EVMU64
232	1-4	1-3	1-3
375	5-8	4-7	4
430	9-10	-	-

Maximum working	Pump Model		
pressure (psi)	EVMSUG32	EVMSUG45	
230	1-5	1-4	
360	6-8	5-6	
430	9-10	-	
500	-	7	

15 POSITIONING OF HOLES FOR FASTENING DOWN



Pump Model	D	Α	В
	mm	mm	mm
EVMS1			
EVMS3	12	100	180
EVMS5			
EVMS10			
EVMS15		130	215
EVMS20			
EVM(SG)32		170	240
EVM(SG)45	14	400	000
EVM64		190	266

Pump Model	D	Α	В
	in	in	in
EVMS1			
EVMS3		3 15/16	7 3/32
EVMS5	15/32		
EVMS10	13/32		
EVMS15		5 1/8	8 15/32
EVMS20			
EVM(SG)32		6 11/16	9 7/16
EVM(SG)45	9/16	7 15/32	10 15/32
EVM64		1 10/32	10 15/32

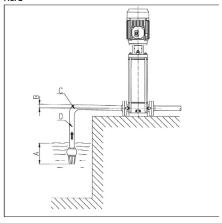

15.1 WARNINGS FOR CORRECT OPERATION OF EVMU AND EVMSU(G) PUMPS (FIG. 1 - FIG. 2)

FIG. 1

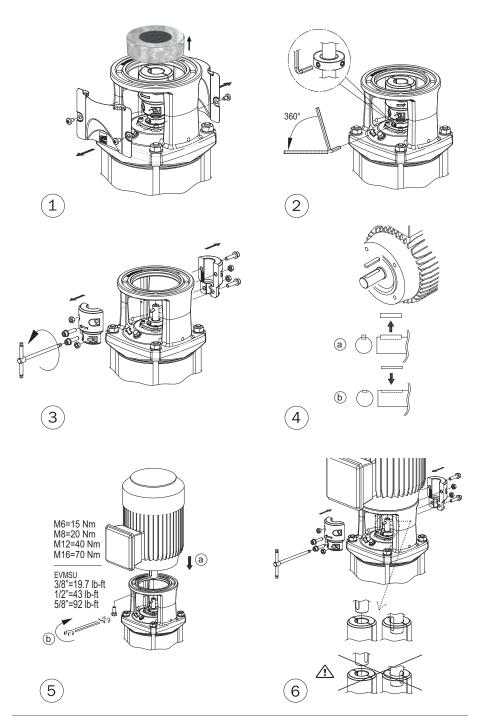
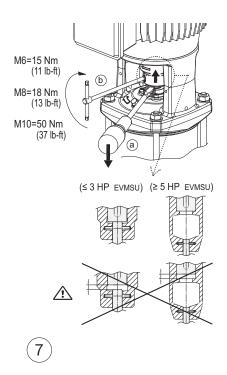
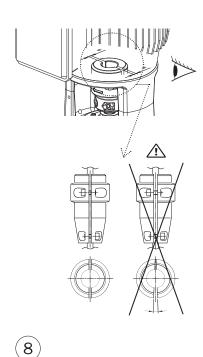
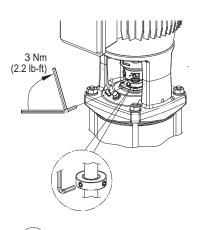
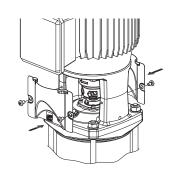

- a) Adequate immersion;
- b) Positive slope;
- c) Wide-radius bend
- d) Pipework with independent supports;
- e) Suction pipe diameter ≥ pump port diameter;
- f) Reducing coupling for eccentric pipes.

FIG. 2

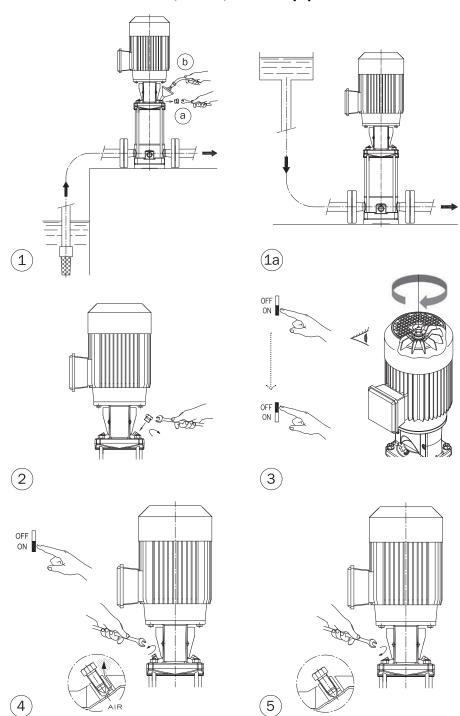


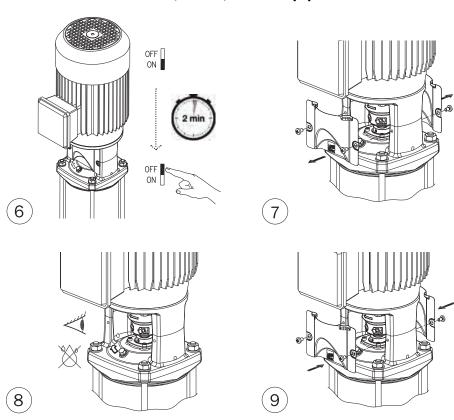

- a) Insufficient immersion;
- b) Negative slope, air pockets created:
- c) Tight bend, pressure loss;
- d) Pipe diameter < pump port diameter, pressure loss


ASSEMBLING THE MOTOR TO THE PUMP - EVMSU1 to EVMSU20 and EVMSUG32-45 [-A-]



ASSEMBLING THE MOTOR TO THE PUMP - EVMSU1 to EVMSU20 and EVMSUG32-45 [-A-]

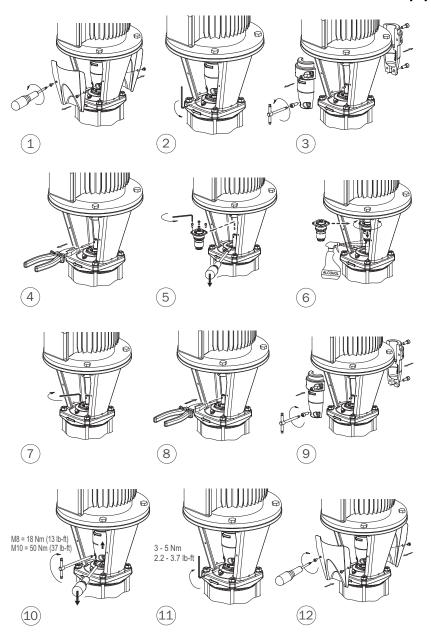



(10)

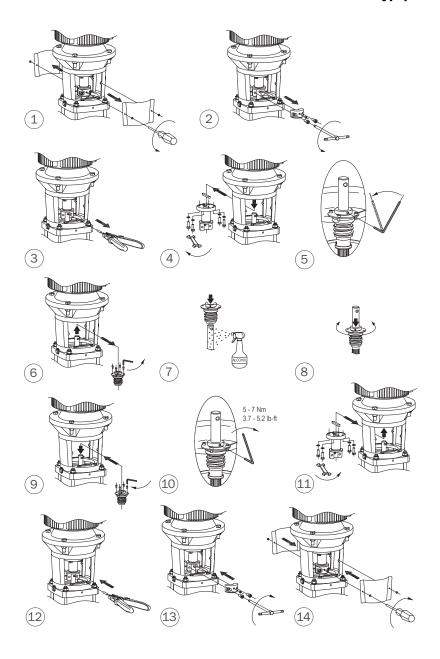
9


USE, STARTING, AND RUNNING [-B-]

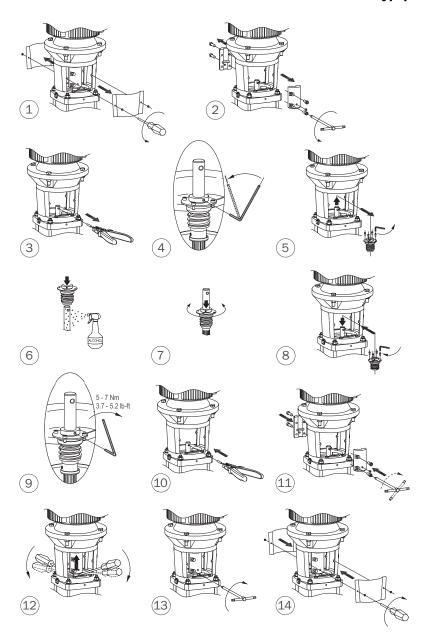
USE, STARTING, AND RUNNING [-B-]



REPLACEMENT OF SHAFT SEAL EVMSU 1 - 3 - 5 - 10 - 15 - 20 and EVMSUG32-45 NON-SPACER COUPLING



[-C-]


REPLACEMENT OF SHAFT SEAL EVMSU 1 - 3 - 5 - 10 - 15 - 20 and EVMSUG32-45 SPACER COUPLING [-C-]

REPLACEMENT OF SHAFT SEAL EVMU 32 - 45 - 64 and EVMSUG 32-45 with bearing [-C-]

REPLACEMENT OF SHAFT SEAL EVMU 32 - 45 - 64 and EVMSUG 32-45 without bearing [-C-]

Contact your dealer or supplier for more information about other EBARA products:

EBARA Pumps Americas Corporation

1651 Cedar Line Drive, Rock Hill, SC 29730 t (803) 327-5005 | f (803) 327-5097

www.pumpsebara.com

All specifications subject to change without notice. © 2018 EBARA Pumps Americas Corporation